Application of Jack Raymond Bird, Geoffrey William Meetham and Marcus Alan Wheeler

MARTIN, Judge.

Appellants filed an application titled “Nickel Chromium Base Alloy Products,” serial No. 855,076 on November 24,1959,1 and have appealed from an adverse decision on patentability with respect to claims 1-10 therein. The Board of Appeals reversed the examiner’s holding of unpatentability over the art of record as to the alloy defined by claims 11 and 12.

The invention is directed to articles of alloy compositions of which the main components are chromium, cobalt, and nickel, with minor percentages of manganese and silicon, and three elements which function as hardeners, aluminum, titanium and molybdenum.

Alloy products of the compositions are used in the production of the inner walls of “jet [exhaust] pipes,” and possess two advantageous welding characteristics, (1) ability to withstand rapid, repeated, thermal cycling (thermal shock resistance), and (2) a relatively high ductility.

The three hardeners are each limited to a specific range of composition, and additionally the sum of lx percent of Mo + 2x percent of Al + 4x percent of Ti must be “below approximately 16.” That value is called the “balance factor.” The aluminum content is disclosed to be of considerable importance. If it exceeds .74%, “ductility of the alloy falls and its welding properties are adversely affected due to skin formation.” If the aluminum content is “substantially less than .3%[,] the resistance * * * to deformation under stress falls off to a low value.”

A representative claim reads:

“1. A formed metal article having a weld therein, the metal of said article and of said weld consisting by weight essentially of approximately 19% to 23% chromium, approximately 12% to 25% cobalt, each of the three hardening elements molybdenum, aluminum and titanium within the approximate ranges of 3.0% to 8.6% molybdenum, 0.3% to 0.74% aluminum, 1.7% to 2.45% titanium, together with approximately 0.2% to 0.6% manganese, and 0.1% to 0.5% silicon, and the balance nickel apart from impurities and residuals from de-oxidizers, said alloy being characterized in that the sum of the percentage of molybdenum plus twice the percentage . of aluminum plus four times the percentage of titanium equals a figure below approximately 16.”

It is to be noted that applicants are claiming an article of manufacture which contains a weld. In certain claims both *981the weld and the article are composed of the alloy and in others only the weld is so specified. The remaining claims are drawn to preferred ranges of the three hardener elements.

The reference relied on for the rejection is:

Gresham et al. 2,712,498 July 5, 1955

Gresham et al. (hereinafter Gresham) show the same basic alloy of Cr-Co-Ni and the additives Mn and Si, all in the same proportions as claimed by appellants. Gresham also is particularly concerned with the same three hardeners, Mo, Al and Ti, but the balance factor is selected to be between 16 and 20 for the purpose of safe control of the creep strength in blades and other “high duty” engineering parts of gas turbines.

Reference to the accompanying graph will aid in understanding the issues here:

The graph2 represents a plot of the amount of two of the hardeners, aluminum vs. titanium. It should be understood that the amount of the third hardener, molybdenum, is kept within a defined range. Since that range is the same for both appellants and Gresham, we shall follow appellants’ lead in not according it further significance.

Referring to the graph, appellants’ claims are drawn to articles, in part consisting of alloys, falling within the area ABCD, and, as preferred alloys, within the area GHIJ. Appellants’ specification discloses three specific examples of alloy compositions which fall within claimed area ABCD, positions labeled Ex. 1, Ex. 2, and “X” on the graph. The alloys Ex. 1 and Ex. 2 have a balance factor be*982low 16 while that of alloy “X” is above 16.3 The specification also discloses thermal shock tests of these three compositions. A weld of the alloys of Ex. 1 and 2 withstand 1410 and 1020 thermal cycles before breaking, while that of alloy “X” failed after 510 cycles. The superiority of the two alloys having a balance factor below 16 seems clear.

Two alloys of Gresham having balance factors below 16, termed “f” and “g”, are located on the graph at positions R“f” and R“g” respectively. In two affidavits by Meetham, and an exhibit, appellants attempted to duplicate the Gresham alloys “f” and “g”. The duplications resulted in alloys of composition labeled Al and A2 on the graph. These affidavit alloys, in comparison with the thermal shock characteristics of alloys Ex. 1 and 2, failed after 488 and 64 cycles respectively, although both alloys Al and A2 had balance factors below 16. Those results clearly show that the amounts of the hardeners, particularly aluminum, are, as the specification states, “of considerable importance.” While appellants’ attempt to duplicate alloy “f” resulted in a somewhat poorer approximation than the duplication of “g”, the reasonable approximation of such tight specifications is entirely acceptable and clearly shows the criticality of the aluminum component.

While alloys “f” and “g” fall outside appellants’ claimed area ABCD, the examiner relied on other disclosure in Gresham as showing that “the alloys [per se] are old.” Appellants acknowledge only that Gresham discloses some 12 other alloys, of which 5 are said by Gresham to have balance factors of less than 16, and which fall somewhere within the area WXYZ of the graph above. Appellants argue that Gresham does not describe any specific alloy falling within area ABCD and having a balance factor less than 16, and thus does not place the disclosed alloy in the possession of the public, In re LeGrice, 301 F.2d 929, 49 CCPA 1124; In re Brown, 329 F.2d 1006, 51 CCPA 1254; E. I. du Pont de Nemours & Co. v. Ladd, 117 U.S.App.D.C. 246, 328 F.2d 547 (1964).

That part of Gresham relied on by the examiner as containing anticipating alloys states:

“ * * * In making a considerable number of casts from alloys of the type containing, besides 20% Cr and 20% Co, 6 per cent Mo, 0.9 per cent Al and 2.4 per cent Ti, the balance being Ni, in varying the percentage of Mo by +0.4 per cent, of A1 by +0.3 per cent and of Ti +0.3 per cent, we found that, if all errors were towards the minus side and the balance factor dropped to 15.2, the creep strength was poor. On the other hand, whenever one of the three elements kept on the higher level, the creep properties were greatly improved.
“A series of twelve nickel alloys were prepared having the approximate composition 20% chromium and 20% cobalt, while the percentage of Mo ranged from 5.5 to 6.5, that of A1 from 0.4 to 1.2, that of Ti from 2.2 to 2.7. * * * ” [Emphasis supplied.]

Gresham continues by describing a graph of the time to fracture plotted against the balance factor for the twelve alloys. The graph contains twelve data points, five of which correspond to alloys with balance factors between 15 and 16.

The solicitor takes direct issue with appellants’ contention that Gresham does not show the claimed alloys to be old. The solicitor first points to the above-quoted portion of Gresham and notes that among the alloys there is one “in which all variations are on the minus side and the balance factor is 15.2 That alloy obviously contains 5.6% Mo, 0.6% A1 and 2.1% Ti.” Such an alloy would fall at the intersection of lines E-K and G-H *983on the graph reproduced above, and has been labeled 0.

The solicitor then finds a second alloy to fall specifically within appellants’ claimed area:

“ * * * Second, of the twelve alloys described by Gresham et al. in column 2, lines 36-64, one is shown on their graph * * * by an (x) at a point corresponding to an alloy with a balance factor of 15.1. As shown by the balance factor formula (1 X % Mo + 2 X % Al + 4 X % Ti=balance factor), there is one, and only one, alloy within the ranges of 5.5-6.5% Mo, 0.4-1.2% Al and 2.2-2.7% Ti which has a balance factor of 15.1. That alloy is the one containing the minimum of 5.-5%Mo, 0.4% Al and 2.2% Ti. On figure 2 of appellant’s drawings * * *, 0.4% Al and 2.2% Ti are at a point which is within the parallelogram GHIJ. On the graph * * * [herein], 0.4% Al and 2.2% Ti are at the point Z.”

We find no error in the solicitor’s analysis and hold that Gresham does disclose that two alloys, alloys “O” and “Z” which fall within the terms of the claims, were indeed prepared. There is thus no question that the test in In re LeGrice, supra, and In re Brown, supra, have been met.

Appellants further contend that even if the alloys claimed are old, the article of manufacture would not have been obvious, since Gresham was interested in the above 16 balance factor alloys for another purpose, and since the ductility and thermal shock properties employed by appellant were not disclosed by Gresham.

We do not agree with that contention. We recognize that the claims do not call for the alloy per se, being directed to articles which in part contain a weld of the specified alloy composition. Finding the composition fully disclosed in Gresham, we do not think that the remaining claim limitation, of an article and weld, to be sufficient to impart pat-entability to the claims, even if we take the claims as drawn only to a new use. We agree with the examiner that it is known in the art to weld alloys. Further, we agree with the examiner that one of ordinary skill in this art would know that alloys having poor creep strength, clearly and repeatedly disclosed by Gresham as a property of those alloys having a balance factor below 16, correspondingly would have a higher ductility.4 We find nothing unobvious in employing the known alloy to take advantage of one of its properties, poor creep strength, or the corresponding property higher ductility.

Appellants rely on In re Tanczyn, 202 F.2d 785, 787, 40 CCPA 886, 889, wherein the claims were directed:

“ * * * to an article of manufacture produced from an alloy composition covering a particular range, with the prior art showing two specific alloy compositions falling within the range recited in the claims. * * *
****** “ * * * the appealed claims are not directed to an alloy composition as such, but to certain manufactured products. Specifically, the claims are directed to ‘wrought and polished straight chronium stainless steel products * * * substantially free of surface defacing complex silicate inclusions * * *.’ In these particular circumstances, we think such limitations are signifi*984cant and give life and meaning to the appealed claims. It was the search for such products by appellant which gave rise to discovery of the cause of the problem here involved, and to its solution. Further, we agree with the argument by counsel for appellant that the distinction between claims to the wrought and polished products and any claim to the alloy composition as such is real and significant, since production of the alloy composition itself would not infringe the appealed claims to the wrought and polished products.” [Emphasis by the court.]

In distinction to the facts of the Tanczyn case, we do not find in the particular circumstances here that the claimed limitations “are significant and give life and meaning to the appealed claims.” To the contrary, it is precisely our point that it is the alloy composition here which gives meaning to the instant claims. Further, we find in Tanczyn a recitation of a product not known or produced before as resulting from the discovery of the cause of a problem and the discovery that the solution lay in employment of the particular alloys. We have no such situation here.

We find In re Petering, 301 F.2d 676, 49 CCPA 993; Traitel Marble Co. v. Hungerford Brass & Copper Co., 18 F.2d 66 (2d Cir. 1927), Tilghman v. Proctor, 102 U.S. 707, 26 L.Ed. 279 (1880), and International Nickel Co. v. Ford Motor Co., 166 F.Supp. 551, (S.D.N.Y.1958) inapposite to the facts of this case. Here, the Gresham disclosure is an adequate description of the alloys within the meaning of 35 U.S.C. § 102, as distinct from certain reference compounds in Petering. In contrast to the Traitel Marble, Tilghman, and International Nickel cases, there is in Gresham more than an unrecognized or unwitting production of the alloys now claimed, since the alloys were described as actually produced pursuant to a specific purpose and were tested in a “very sensitive creep test.” The selection by Gresham of only those alloys which suited his immediate purpose does not transform the disclosure of the other specific below-16 alloys or their properties to a state of such obscurity as to make their selection for another use, by employing their clearly desirable properties, unobvious.

For the foregoing reasons the decision of the board is affirmed.

Affirmed.

. Appellants made claim for benefit of filing date of several foreign applications the earliest of which was filed in Great Britain on November 26,1958.

. This graph is a slightly modified version of a graph presented in appellants’ brief. lt has been modified only to facilitate reproduction.

. The alloy “x” appears to fall within the claims but, in fact, does not since neither the third hardener, molybdenum, nor the related balance factor are represented by the graph.

. The solicitor supports the examiner’s position by citing, and requesting we take judicial notice of, two publications showing that a decrease in creep strength corresponds to an increase in ductility, and that ductility is a known important factor in providing shock resistance: Smith, G. V., Properties in Metals at Elevated Temperatures, McGraw-Hill Book Co., New York, 1st Ed. (1950) p. 385, and Behaviour of Metals at Elevated Temperatures, Institution of Metallurgists, Iliffe & Sons, Ltd., London (1957) pp. 117 and 118. We do not find it necessary to take judicial notice of these standard works since we accord little weight to the article limitation.